Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Trials ; 24(1): 213, 2023 Mar 22.
Article in English | MEDLINE | ID: covidwho-2262440

ABSTRACT

BACKGROUND: Immunosuppression after kidney transplantation is mainly guided via plasma tacrolimus trough level, which cannot sufficiently predict allograft rejection and infection. The plasma load of the non-pathogenic and highly prevalent torque teno virus (TTV) is associated with the immunosuppression of its host. Non-interventional studies suggest the use of TTV load to predict allograft rejection and infection. The primary objective of the current trial is to demonstrate the safety, tolerability and preliminary efficacy of TTV-guided immunosuppression. METHODS: For this purpose, a randomised, controlled, interventional, two-arm, non-inferiority, patient- and assessor-blinded, investigator-driven phase II trial was designed. A total of 260 stable, low-immunological-risk adult recipients of a kidney graft with tacrolimus-based immunosuppression and TTV infection after month 3 post-transplantation will be recruited in 13 academic centres in six European countries. Subjects will be randomised in a 1:1 ratio (allocation concealment) to receive tacrolimus either guided by TTV load or according to the local centre standard for 9 months. The primary composite endpoint includes the occurrence of infections, biopsy-proven allograft rejection, graft loss, or death. The main secondary endpoints include estimated glomerular filtration rate, graft rejection detected by protocol biopsy at month 12 post-transplantation (including molecular microscopy), development of de novo donor-specific antibodies, health-related quality of life, and drug adherence. In parallel, a comprehensive biobank will be established including plasma, serum, urine and whole blood. The date of the first enrolment was August 2022 and the planned end is April 2025. DISCUSSION: The assessment of individual kidney transplant recipient immune function might enable clinicians to personalise immunosuppression, thereby reducing infection and rejection. Moreover, the trial might act as a proof of principle for TTV-guided immunosuppression and thus pave the way for broader clinical applications, including as guidance for immune modulators or disease-modifying agents. TRIAL REGISTRATION: EU CT-Number: 2022-500024-30-00.


Subject(s)
Kidney Transplantation , Torque teno virus , Adult , Humans , Tacrolimus/adverse effects , Kidney Transplantation/adverse effects , Quality of Life , Immunosuppression Therapy , Graft Rejection/diagnosis , Graft Rejection/prevention & control , Immunosuppressive Agents/adverse effects
2.
J Clin Virol ; 162: 105428, 2023 05.
Article in English | MEDLINE | ID: covidwho-2261189

ABSTRACT

BACKGROUND: Immunosuppressed individuals such as kidney transplant recipients (KTR) and hemodialysis patients (DP) show impaired immune responses to COVID-19 vaccination. Plasma Torque Teno Virus (TTV) DNA load is used as surrogate for the individual degree of immunosuppression. We now assessed the association of TTV load at time of COVID-19 vaccination with humoral and cellular immune response rates to vaccination in KTR, DP, and healthy medical personnel (MP). METHODS: A total of 100 KTR, 115 DP and 54 MP were included. All were SARS-CoV-2 seronegative at the time of vaccination with either BNT162b2 or mRNA-1273. Plasma TTV loads were assessed at the time of first vaccination. After two-dose vaccination, seroconversion (de novo detection of SARS-CoV-2 S1-IgA and/or IgG) was determined. In addition, cellular responses as assessed by interferon γ release and neutralizing antibodies were assessed in a subset of participants. ROC analyses were performed to define TTV load cut-offs predicting specific immune responses to vaccination. RESULTS: Plasma TTV loads at the time of first vaccination were negatively associated with seroconversion after two-dose vaccination in KTR (OR 0.87, 95% CI 0.76-0.99). TTV loads were significantly lower in KTR who developed humoral and cellular immune responses to vaccination compared to non-responders (p = 0.0411 and 0.0030, respectively). Of patients with TTV loads above 106 copies/ml, none developed cellular immune responses against SARS-CoV-2, and only 2 of 17 (12%) seroconverted in response to vaccination. CONCLUSION: Plasma TTV loads at the time of first vaccination in immunosuppressed individuals may be useful to predict individual vaccine-specific immune responses.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , RNA, Messenger , Transplant Recipients , Antibodies, Viral
3.
Front Med (Lausanne) ; 9: 910987, 2022.
Article in English | MEDLINE | ID: covidwho-2142048

ABSTRACT

Background: While anti-SARS-CoV-2 vaccination success in kidney transplant recipients (KTR) after two doses and 1273-mRNA was associated with higher seroconversion rates compared to BNT162b2-mRNA in our "DIA-Vacc Study" (NCT04799808), it remains unclear whether this may also be the case in non-responding KTR after a third vaccination dose. Materials and Methods: Non-responding KTR (after two mRNA vaccinations) were investigated 4.5-6 months after study enrollment at first vaccination. One hundred sixty-six of 193 received a third vaccination between 3.5 and 5 months after the initial study enrollment and were always investigated 4 weeks later, exploring humoral immune response (ELISA) and specific cellular responses (interferon-γ release assay). Sixty-seven of 193 measurements in KTR were done immediately before the third vaccination or in KTR without further vaccination at 4.5-6 months. Results: Of 193 KTR with no initial immune response 4 weeks after the second vaccination, 106/87 were immunized twice with 1273-mRNA/BNT162b2-mRNA, respectively. Additional mRNA booster vaccination led to positive seroconversion rates of 30-50%, while 16% of the initial non-responders demonstrated a delayed seroconversion without any booster vaccination. Using logistic regression analysis, a positive IgG response after the third vaccination was 23% more likely if the primary vaccine type was 1273-mRNA compared to BNT162b2-mRNA (OR = 4.420, 95% CI [1.208-16.173], p = 0.025). Primary vaccine type, a weak anti-SpikeS1 IgG response 4 weeks after second vaccination (3.2-35.2 BAU/ml, p < 0.001) and a lack of MMF/MPA as part of the immunosuppressive treatment (trend, p = 0.06) but no other variables studied correlated with seroconversion success. Conclusion: This observational study adds important evidence toward using 1273-mRNA as the primary mRNA vaccine type for immunosuppressed KTR.

4.
Horm Metab Res ; 54(11): 715-720, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2096875

ABSTRACT

A continual increase in cases of Long/Post COVID constitutes a medical and socioeconomic challenge to health systems around the globe. While the true extent of this problem cannot yet be fully evaluated, recent data suggest that up to 20% of people with confirmed SARS-CoV-2 suffer from clinically relevant symptoms of Long/Post COVID several weeks to months after the acute phase. The clinical presentation is highly variable with the main symptoms being chronic fatigue, dyspnea, and cognitive symptoms. Extracorporeal apheresis has been suggested to alleviate symptoms of Post/COVID. Thus, numerous patients are currently treated with apheresis. However, at present there is no data from randomized controlled trials available to confirm the efficacy. Therefore, physicians rely on the experience of practitioners and centers performing this treatment. Here, we summarize clinical experience on extracorporeal apheresis in patients with Post/COVID from centers across Germany.


Subject(s)
Blood Component Removal , COVID-19 , Humans , SARS-CoV-2 , COVID-19/therapy , Germany , Post-Acute COVID-19 Syndrome
5.
Nat Rev Nephrol ; 18(11): 708-723, 2022 11.
Article in English | MEDLINE | ID: covidwho-2000907

ABSTRACT

Infection is the second leading cause of death in patients with chronic kidney disease (CKD). Adequate humoral (antibody) and cellular (T cell-driven) immunity are required to minimize pathogen entry and promote pathogen clearance to enable infection control. Vaccination can generate cellular and humoral immunity against specific pathogens and is used to prevent many life-threatening infectious diseases. However, vaccination efficacy is diminished in patients with CKD. Premature ageing of the immune system and chronic systemic low-grade inflammation are the main causes of immune alteration in these patients. In the case of SARS-CoV-2 infection, COVID-19 can have considerable detrimental effects in patients with CKD, especially in those with kidney failure. COVID-19 prevention through successful vaccination is therefore paramount in this vulnerable population. Although patients receiving dialysis have seroconversion rates comparable to those of patients with normal kidney function, most kidney transplant recipients could not generate humoral immunity after two doses of the COVID-19 vaccine. Importantly, some patients who were not able to produce antibodies still had a detectable vaccine-specific T cell response, which might be sufficient to prevent severe COVID-19. Correlates of protection against SARS-CoV-2 have not been established for patients with kidney failure, but they are urgently needed to enable personalized vaccination regimens.


Subject(s)
COVID-19 , Renal Insufficiency, Chronic , Renal Insufficiency , Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Renal Dialysis , Vaccination , Immunity, Humoral , Renal Insufficiency, Chronic/complications
6.
Front Med (Lausanne) ; 9: 928542, 2022.
Article in English | MEDLINE | ID: covidwho-1957187

ABSTRACT

Kidney transplant recipients (KTR) show significantly lower seroconversion rates after SARS-CoV-2 mRNA vaccination compared to dialysis patients (DP). Mycophenolate mofetil or mycophenolic acid (MMF/MPA) in particular has been identified as a risk factor for seroconversion failure. While the majority of all KTR worldwide receive MMF/MPA for immunosuppressive therapy, its impact on antibody decline in seroconverted KTR still remains unclear. In an observational study (NCT04799808), we investigated whether 132 seroconverted KTR (anti-spike S1 IgG or IgA positive after 2 vaccinations) show a more rapid antibody decline with MMF/MPA than those without this medication. A total of 2 months after mRNA vaccination, average anti-spike S1 IgG levels of KTR with MMF/MPA were lower than without (p = 0.001), while no differences between these two groups were observed after 6 months (p = 0.366). Similar results were obtained for anti-RBD IgG antibodies (T2 p = 0.003 and T3 p = 0.135). The probability of severe IgG decline with MMF/MPA was three times lower than without (p = 0.003, OR 0.236, 95% CI 0.091-0.609). In the multivariate analysis, neither immunosuppressants, such as calcineurin inhibitors, mTOR inhibitors (mTOR-I; mechanistic target of rapamycin), glucocorticoids, nor vaccine type, sex, or age showed a significant influence on IgG titer decline between 2 and 6 months. For the decision on additional booster vaccinations, we consider immunosurveillance to be needed as an integral part of renal transplant follow-up after SARS-CoV-2 mRNA vaccination. Not only the lack of seroconversion but also the peak and titer decline of the specific IgG and RBD IgG antibody formation after two mRNA vaccinations is significantly influenced by MMF/MPA.

7.
Frontiers in medicine ; 9, 2022.
Article in English | EuropePMC | ID: covidwho-1940276

ABSTRACT

Background While anti-SARS-CoV-2 vaccination success in kidney transplant recipients (KTR) after two doses and 1273-mRNA was associated with higher seroconversion rates compared to BNT162b2-mRNA in our “DIA-Vacc Study” (NCT04799808), it remains unclear whether this may also be the case in non-responding KTR after a third vaccination dose. Materials and Methods Non-responding KTR (after two mRNA vaccinations) were investigated 4.5–6 months after study enrollment at first vaccination. One hundred sixty-six of 193 received a third vaccination between 3.5 and 5 months after the initial study enrollment and were always investigated 4 weeks later, exploring humoral immune response (ELISA) and specific cellular responses (interferon-γ release assay). Sixty-seven of 193 measurements in KTR were done immediately before the third vaccination or in KTR without further vaccination at 4.5–6 months. Results Of 193 KTR with no initial immune response 4 weeks after the second vaccination, 106/87 were immunized twice with 1273-mRNA/BNT162b2-mRNA, respectively. Additional mRNA booster vaccination led to positive seroconversion rates of 30–50%, while 16% of the initial non-responders demonstrated a delayed seroconversion without any booster vaccination. Using logistic regression analysis, a positive IgG response after the third vaccination was 23% more likely if the primary vaccine type was 1273-mRNA compared to BNT162b2-mRNA (OR = 4.420, 95% CI [1.208–16.173], p = 0.025). Primary vaccine type, a weak anti-SpikeS1 IgG response 4 weeks after second vaccination (3.2–35.2 BAU/ml, p < 0.001) and a lack of MMF/MPA as part of the immunosuppressive treatment (trend, p = 0.06) but no other variables studied correlated with seroconversion success. Conclusion This observational study adds important evidence toward using 1273-mRNA as the primary mRNA vaccine type for immunosuppressed KTR.

8.
Lancet Reg Health Eur ; 17: 100371, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783619

ABSTRACT

Background: Vulnerable dialysis and kidney transplant patients show impaired seroconversion rates compared to medical personnel eight weeks after SARS-CoV-2mRNA vaccination. Methods: We evaluated six months follow up data in our observational Dia-Vacc study exploring specific cellular (interferon-γ release assay) or/and humoral immune responses after 2x SARS-CoV-2mRNA vaccination in 1205 participants including medical personnel (125 MP), dialysis patients (970 DP) and kidney transplant recipients (110 KTR) with seroconversion (de novo IgA or IgG antibody positivity by ELISA) after eight weeks. Findings: Six months after vaccination, seroconversion remained positive in 98% of MP, but 91%/87% of DP/KTR (p = 0·005), respectively. Receptor binding domain-IgG (RBD-IgG) antibodies were positive in 98% of MP, but only 68%/57% of DP/KTR (p < 0·001), respectively. Compared to MP, DP and KTR were at risk for a strong IgG or RBD-IgG decline (p < 0·001). Within the DP but not KTR group male gender, peritoneal dialysis, short time on dialysis, BNT162b2mRNA vaccine, immunosuppressive drug use and diabetes mellitus were independent risk factors for a strong decline of IgG or RBD antibodies. The percentage of cellular immunity decline was similar in all groups. Interpretation: Both vulnerable DP and KTR groups are at risk for a strong decline for IgG and RBD antibodies. In KTR, antibody titres peak at a markedly lower level and accelerated antibody decline is mixed with a delayed/increasing IgG, RBD-IgG, or cellular immune response in a 16% fraction of patients. In both populations, immune monitoring should be used for early timing of additional booster vaccinations. Funding: This study was funded by the Else Kröner Fresenius Stiftung, Bad Homburg v. d. H., grant number Fördervertrag EKFS 2021_EKSE.27.

9.
Horm Metab Res ; 54(8): 510-513, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1778669

ABSTRACT

Diabetic nephropathy is the most common condition that requires a chronic renal replacement therapy, such as hemodialysis, peritoneal dialysis, kidney transplantation, or simultaneous kidney-pancreas transplantation. Chronic kidney disease progression, that is the loss of nephrons, which causes the continuous decline of the eGFR, underlies the pathogenesis of diabetic nephropathy. During the COVID-19 pandemic, it became clear that diabetic nephropathy is amongst the independent risk factors that predicts unfavourable outcome upon SARS-CoV2 infection. While we still lack conclusive mechanistic insights into how nephrons are rapidly lost upon SARS-CoV2 infection and why patients with diabetic nephropathy are more susceptible to severe outcomes upon SARS-CoV2 infection, here, we discuss several aspects of the interface of COVID-19 with diabetic nephropathy. We identify the shortage of reliable rodent models of diabetic nephropathy, limited treatment options for human diabetic nephropathy and the lack of knowledge about virus-induced signalling pathways of regulated necrosis, such as necroptosis, as key factors that explain our failure to understand this system. Finally, we focus on immunosuppressed patients and discuss vaccination efficacy in these and diabetic patients. We conclude that more basic science and mechanistic understanding will be required both in diabetic nephropathy as well as in host immune responses to the SARS-CoV2 virus if novel therapeutic strategies are desired.


Subject(s)
COVID-19 , Diabetes Mellitus , Diabetic Nephropathies , Kidney Failure, Chronic , Diabetic Nephropathies/pathology , Humans , Pandemics , RNA, Viral , SARS-CoV-2
11.
Sci Adv ; 8(5): eabl8920, 2022 02 04.
Article in English | MEDLINE | ID: covidwho-1673337

ABSTRACT

Dexamethasone is widely used as an immunosuppressive therapy and recently as COVID-19 treatment. Here, we demonstrate that dexamethasone sensitizes to ferroptosis, a form of iron-catalyzed necrosis, previously suggested to contribute to diseases such as acute kidney injury, myocardial infarction, and stroke, all of which are triggered by glutathione (GSH) depletion. GSH levels were significantly decreased by dexamethasone. Mechanistically, we identified that dexamethasone up-regulated the GSH metabolism regulating protein dipeptidase-1 (DPEP1) in a glucocorticoid receptor (GR)-dependent manner. DPEP1 knockdown reversed the phenotype of dexamethasone-induced ferroptosis sensitization. Ferroptosis inhibitors, the DPEP1 inhibitor cilastatin, or genetic DPEP1 inactivation reversed the dexamethasone-induced increase in tubular necrosis in freshly isolated renal tubules. Our data indicate that dexamethasone sensitizes to ferroptosis by a GR-mediated increase in DPEP1 expression and GSH depletion. Together, we identified a previously unknown mechanism of glucocorticoid-mediated sensitization to ferroptosis bearing clinical and therapeutic implications.


Subject(s)
Dexamethasone/pharmacology , Dipeptidases/genetics , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation/drug effects , Glutathione/metabolism , Receptors, Glucocorticoid/metabolism , Carbolines/adverse effects , Carbolines/pharmacology , Cell Line , Dipeptidases/metabolism , Fluorescent Antibody Technique , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Knockdown Techniques , Humans , Immunophenotyping , Oxidation-Reduction/drug effects , Piperazines/adverse effects , Piperazines/pharmacology
12.
MEDLINE; 2020.
Non-conventional in English | MEDLINE | ID: grc-750534

ABSTRACT

Solid organ transplantation is a lifesaving routine procedure. In the wake of the COVID-19 pandemic, procurement and transplantation programs in many countries experienced a considerable reduction of organ donation and transplantation by up to 90% caused by an capacity overload of health care providers but also for fear of increased COVID-19 related risks for transplant recipients acquired by viral transmissions from donor to recipient or early after transplantation. Competition for intensive care capacity for severely ill COVID-19 patients versus transplant recipients and organ donors could also have played a role. In Germany, early pandemic management with high capacity testing including all potential organ donors, marked extension of intensive care capacities, structural health care system with a relatively high number of hospitals with intensive care units (1248) as well as transplant centers (40) with high capacities and regional organization of organ donation and transplantation may have been advantageous.

14.
Lancet Reg Health Eur ; 10: 100244, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1482786
16.
Lancet Reg Health Eur ; 9: 100178, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1322249

ABSTRACT

BACKGROUND: Dialysis and kidney transplant patients are vulnerable populations for COVID-19 related disease and mortality. METHODS: We conducted a prospective study exploring the eight week time course of specific cellular (interferon-γ release assay and flow cytometry) or/and humoral immune responses (ELISA) to SARS-CoV-2 boost vaccination in more than 3100 participants including medical personnel, dialysis patients and kidney transplant recipients using mRNA vaccines BNT162b2 or mRNA-1273. RESULTS: SARS-CoV-2-vaccination induced seroconversion efficacy in dialysis patients was similar to medical personnel (> 95%), but markedly impaired in kidney transplant recipients (42%). T-cellular immunity largely mimicked humoral results. Major risk factors of seroconversion failure were immunosuppressive drug number and type (belatacept, MMF-MPA, calcineurin-inhibitors) as well as vaccine type (BNT162b2 mRNA). Seroconversion rates induced by mRNA-1273 compared to BNT162b2 vaccine were 97% to 88% (p < 0.001) in dialysis and 49% to 26% in transplant patients, respectively. Specific IgG directed against the new binding domain of the spike protein (RDB) were significantly higher in dialysis patients vaccinated by mRNA-1273 (95%) compared to BNT162b2 (85%, p < 0.001). Vaccination appeared safe and highly effective demonstrating an almost complete lack of symptomatic COVID-19 disease after boost vaccination as well as ceased disease incidences during third pandemic wave in dialysis patients. CONCLUSION: Dialysis patients exhibit a remarkably high seroconversion rate of 95% after boost vaccination, while humoral response is impaired in the majority of transplant recipients. Immunosuppressive drug number and type as well as vaccine type (BNT162b2) are major determinants of seroconversion failure in both dialysis and transplant patients suggesting immune monitoring and adaption of vaccination protocols.

17.
J Nephrol ; 34(4): 1025-1037, 2021 08.
Article in English | MEDLINE | ID: covidwho-1296981

ABSTRACT

BACKGROUND: Recent data demonstrate potentially protective pre-existing T cells reactive against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in samples of healthy blood donors, collected before the SARS-CoV-2 pandemic. Whether pre-existing immunity is also detectable in immunosuppressed patients is currently not known. METHODS: Fifty-seven patients were included in this case-control study. We compared the frequency of SARS-CoV-2-reactive T cells in the samples of 20 renal transplant (RTx) patients to 20 age/gender matched non-immunosuppressed/immune competent healthy individuals collected before the onset of the SARS-CoV-2 pandemic. Seventeen coronavirus disease 2019 (COVID-19) patients were used as positive controls. T cell reactivity against Spike-, Nucleocapsid-, and Membrane- SARS-CoV-2 proteins were analyzed by multi-parameter flow cytometry. Antibodies were analyzed by neutralization assay. RESULTS: Pre-existing SARS-CoV-2-reactive T cells were detected in the majority of unexposed patients and healthy individuals. In RTx patients, 13/20 showed CD4+ T cells reactive against at least one SARS-CoV-2 protein. CD8+ T cells reactive against at least one SARS-CoV-2 protein were demonstrated in 12/20 of RTx patients. The frequency and Th1 cytokine expression pattern of pre-formed SARS-CoV-2 reactive T cells did not differ between RTx and non-immunosuppressed healthy individuals. CONCLUSIONS: This study shows that the magnitude and functionality of pre-existing SARS-CoV-2 reactive T cell in transplant patients is non-inferior compared to the immune competent cohort. Although several pro-inflammatory cytokines were produced by the detected T cells, further studies are required to prove their antiviral protection.


Subject(s)
COVID-19 , Kidney Transplantation , CD8-Positive T-Lymphocytes , Case-Control Studies , Humans , Kidney Transplantation/adverse effects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL